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This paper deals with the mechanism of grazing incidence �e,2e� events from surfaces. Two different
approaches are considered. In both cases, elastic scattering with the crystal lattice assists the inelastic collision;
these two steps are coupled either coherently or incoherently. Experimental evidence is given that the “coher-
ent” approach reproduces better the cross section dependence on momentum transfer in the specific case of
asymmetric kinematics at moderate electron energies. This model has allowed us to map out the band disper-
sion of the outermost valence states of highly oriented pyrolytic graphite and to measure the momentum
distribution of �-electron states without invoking the contribution of reciprocal lattice vectors in the momen-
tum conservation. Agreement between theory and experiment is satisfactory, though the presence of events
where crystal momentum is reconstructed cannot be ruled out. These results, obtained with a significant
reduction of the experiment duration by an implemented apparatus, show that reflection �e,2e� can be used to
build up a momentum spectroscopy with high surface sensitivity.
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I. INTRODUCTION

The spectral momentum density of an electron state is the
square modulus of the wave function in the momentum space
��q� ,��= ���q� ,���2, where q� and � are the momentum and the
binding energy, respectively. It provides information about
the different states of aggregation of matter that is more de-
tailed than the one usually obtained by binding energy aimed
spectroscopies.1–3 This is because momentum density is
more sensitive than binding energy to the long range part of
the Coulomb interaction, hence to the diffused part of the
electron wave function. In this respect, while providing a test
bed for theoretical models, ��q� ,�� can be suitably used to
shed light on the properties of complex aggregates. In par-
ticular, the momentum density is an observable potentially
relevant to characterize chemical reactivity4 and, as a conse-
quence, to control the interaction mechanism driving the syn-
thesis of new materials.

Several spectroscopies permit us to measure ��q� ,�� with
various degrees of approximation. The binding energy–
integrated momentum density �0

q�max��q��dq� �i.e., summed
over all occupied bound states and integrated over a given
momentum interval� is obtained by Compton scattering,5

while in positron annihilation �e+e− ,���� the information on
the fully differential ��q� ,�� is obtained but limited to the
Fermi level.6 The ability to gain differential information on
both energy and momentum can be obtained only by apply-
ing coincidence techniques that measure both final particles
produced in a photon-impact �� ,��e� or an electron-impact
ionization event �e,2e�.7 Among them, the �e,2e� spectros-
copy �one electron in–two electrons out� is the one that has
been more extensively applied to study bulk and surface
properties of solids.1

In an �e,2e� event, an incident electron impinges on a
target electron with a subsequent emission of two electrons,
which are detected in coincidence and at well defined angles

and energies. The �e,2e� technique is well established, mak-
ing use of transmission kinematics and high-energy primary
electrons �E�10 keV�.8 By labeling the primary, fast scat-
tered, and slow emitted electrons by the indices 0, s, and e,
respectively, the energy and the momentum conservation of
the �e,2e� process can be written as

E0 + ��q�� = Es + Ee + WF,

k�0 + q� = k�s + k�e + g� , �1�

where k�0,s,e and E0,s,e are wave vectors and energies of the
three free electrons in the vacuum and WF is the work func-
tion of the solid. In Eq. �1�, the momentum conservation is
strictly valid for the component parallel to the surface. The
refraction of electrons at the surface barrier can be taken into
account by correcting the perpendicular component of each
wave vector ki

�= �2m /	2��Ei sin2 
i+U0�1/2, �i=0,s ,e�,
where Ei is the kinetic energy measured in vacuum, 
i is the
angle with respect to the surface of the sample, and U0 is a
suitable value for the inner potential derived from indepen-
dent measurements.9 Within the frame of the plane wave
impulse approximation �PWIA�,1 the momentum opposite to
the recoil ion momentum is, in accordance with Eq. �1�, in-
terpreted as the bound electron momentum, and in the case
of a crystalline target it is related to the bound electron crys-
tal momentum up to a reciprocal lattice vector g� . Hence, the
binding energy and the momentum of the bound electron
state can be determined by kinematical arguments.

Performing experiments at high-momentum transfer
�k� =k�0−k�s�k�e�, the impulse approximation �IA� is valid, and
the momentum space wave function can be probed.10 This
corresponds to a generic band bj whose spectral momentum
density is peaked in the jth zone to measure only the contri-
bution corresponding to the �real� momentum selected ac-
cording to the momentum conservation without relying on g� .
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Contributions to the measured intensity that may come from
all Brillouin zones11 are due to g�-assisted events, their rel-
evance being related to the �de-�localization of the ionizing
collision, that is, to the IA validity. Furthermore, it is an easy
matter to see from Eq. �1� that the possibility of varying
arbitrarily the momentum transfer allows spanning q� even

for g� =0� . Hence, differently from photoemission, �e,2e� al-
lows us to map out the energy vs momentum dispersion re-
lationship at low momenta without relying on the crystal
momentum. This opens up the possibility of measuring the
electronic structure in nonperiodic solids, such as polycrys-
tals, clusters, molecules deposited on surfaces assembling
not in register with the substrate periodicity, etc.12

It has been demonstrated that to study surfaces and over-
layers �such as clean surfaces of real samples, adsorbates,
etc.�, the reflection geometry and the use of electrons with
kinetic energies of a few hundreds of eV are appropriate13

due to the short probing depth of these kinematics.14 Further-
more, the detection in coincidence of the electron pair in the
final state results in a probing depth that is smaller than the
corresponding “single” experiments, where only one of the
two free electrons is revealed. This has been recently shown
in Auger-photoelectron coincidence experiments, which are
characterized by two-electron final states similar to the one
of the reflection �e,2e� performed at intermediate energy.15,16

However, in this energy regime, the electron-solid interac-
tions, such as periodical distortion of the electron motion in
the vacuum due to the interaction with the bulk potential17

and excitation of collective electron modes �both extrinsic
and intrinsic losses�, become relevant.18 In general, these ef-
fects prevent disentangling of dynamic effects from elec-
tronic properties of the target in the �e,2e� cross section. Nev-
ertheless, under proper conditions, an insight into the target
electronic structure can be provided by the cross section
measured by these experiments. As shown in Ref. 19 by
reflection �e,2e� performed at a few hundreds of eV and graz-
ing incidence kinematics, the dispersion curves of the highly
oriented pyrolitic graphite �HOPG� valence states were mea-
sured and a fair agreement between the experimental and the
calculated momentum density of the � band was found. At
lower energies and by spin polarizing the electron source, the
two-electron coincidence technique allowed for an insight
into the spin-split electronic band structure of Fe �100� sur-
face, and it was shown to be suitable to investigate the elec-
trons’ exchange scattering at surfaces.20

In reflection kinematics, the probability for a single-
scattering event is associated with very large k�; hence, a
two-step process, in which a further interaction with the solid
is involved for emitting the electron pair into the vacuum,
may dominate over the single-scattering one.21 This was
demonstrated by Iacobucci et al. for reflection �e,2e� per-
formed at moderate incident energies22 and by Artamonov et
al. for �e,2e� performed at low kinetic energies in back-
scattering geometry.23 In both cases, the cross section
showed symmetry with respect to the direction of the specu-
larly reflected rather than the direct incident beam. On this
base, the ejection of the correlated electron pair requires that
an elastic event producing the mirror reflection assists the
inelastic event that knocks out the bound electron. Once the

ionizing collision has taken place, then the electron pair
propagates to the surface and escapes into the vacuum, with
a mechanism conceptually similar to the one adopted for the
volume photoionization from solids.9

The main purpose of this paper is to gain a better insight
into the mechanism of the reflection �e,2e� process in order
to explore its capability to measure the momentum density of
solids in general and of surfaces in particular. We have car-
ried out an extensive investigation on the grazing angle
�e,2e� cross section upon asymmetric kinematics—i.e., with
unequal sharing of the energy between the final electrons—at
moderate kinetic energies, where surface sensitivity is en-
hanced. In this kinematics, the minimum momentum, trans-
ferred through the inelastic collision in the two-step process,
is five times smaller than the one needed to fully satisfy the
IA but is 2 orders of magnitude larger than the momentum of
an equivalent adsorbed photon �with energy equal to the en-
ergy transfer �E�, i.e., dipole approximation conditions. We
then assume IA to be better suited to describe our experi-
ments and have accordingly written the differential cross sec-
tion. Hence, an interpretation of our experiment will be made
following the footprints of previous works on transmission
�e,2e�.8,12

We have calculated the cross section for the specific kine-
matics of this work starting from the general theory of elec-
tron pair emission from solids proposed in Refs. 18 and 24.
We show that, in spite of the two-step model, the measured
cross section can be factorized in a structure term and a
dynamic one, and upon appropriate approximations, it is pos-
sible to extract the spectral momentum density. This peculiar
spectroscopic information makes reflection �e,2e� a comple-
mentary technique to angle-resolved photoemission spectros-
copy �ARPES� in studying surface electronic properties.
ARPES can determine with great detail the electronic struc-
ture of surface systems;25 in particular, the energy vs crystal-
momentum dispersion relationship is measured with excel-
lent energy and momentum resolutions, though applications
are often limited to systems with long range periodicity.26

Nonetheless, detailed information on the electron momentum
distribution cannot be directly obtained by ARPES due to the
delocalization of the photoemission event, this being well
described by the dipole approximation.

With the goal of determining the validity of the model
used to derive the �e,2e� cross section, as a testing case we
have used electrons with kinetic energies of about 300 eV
incident on a well known system as the �0001� surface of
HOPG. The kinetic energy was nearly the same for the fast
scattered electron and a few tens of eV for the slow one �see
Fig. 1 for a sketch of the kinematics used in the experiment�.
From the dependence of the cross section on k�, two models
have been compared with angle-dependent experiments, the
differences being in the degree of accuracy by which the
electron interaction with the sample is accounted for. Then,
we have used the developed model to interpret the results of
a series of energy-dependent experiments performed at a
fixed geometry: We have measured the valence-band disper-
sion and extracted the electron momentum density for the
HOPG outermost bound states.

The rest of the paper is organized as follows. In the sec-
ond paragraph, the cross section for the reflection �e,2e� is
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derived for asymmetric kinematics at moderate electron en-
ergies. In the third section, the experimental aspects are pre-
sented, with particular attention to the implications due to the
long acquisition times for measuring the multiply differential
�e,2e� cross section. The limitations related to both instru-
mentation and sample stability �surface lifetime� have been
overcome by implementing the reflection �e,2e� apparatus
used by Iacobucci et al.27 with multichannel parallel detec-
tion �in energy for the fast electron, in angle for the slow
one�. The experimental data are reported, analyzed, and dis-
cussed in the fourth section. Finally, the results and the con-
clusions are summarized.

II. THEORETICAL APPROACH

The differential cross section for �e,2e� processes in solids
�DCSS� can be written, within a two-body interaction ap-
proximation, as24

d6�

dEsdsdEede
�

kske

k0
�
jocc

�	k�s,k�e�T�e,2e��k�0,q� j


�	�I��N−1
�2��j,Ee+Es−E0
, �2�

where the sum is over all the spin states, which are not re-
solved in the experiment. The directions of the two ejected
electrons are specified by the two solid angles s and e.
The two state vectors �k�0 ,q� j
 and �k�s ,k�e
 describe the initial
and the final asymptotic electron states, respectively. The
bracket �	�I ��N−1
�2 is the probability that the removal of an
electron from the jth state �q� j
 of the N-electron ground state
leaves the system in the ionized ��I
 state of the residual
N−1 electron system; �	�I ��N−1
�2=�I,N−1 in the frozen-core
approximation.28 The sum is performed over all the occupied
one-particle valence states of the target �q� j
, with energy �i
given by the Dirac-� function. All the interactions leading to

the �e,2e� process are included in the operator T�e,2e�.
24

Asymmetric kinematics �E0−Es�E0� allow us �i� to neglect
the exchange in the final state and �ii� to consider solid-
electron and electron-electron interaction only to the first
order.17 In the frozen-core approximation, the �e,2e� operator
takes the form

T�e,2e� = �1 + VeGe��Wse + Vsgs�Wse + Wseg0�Vs� , �3�

where Vs and Ve are effective potentials accounting for all
possible scattering events with the solid that assist the
electron-electron scattering described by Wse. In Eq. �3�, Ge
is the propagator of the emitted electron in the potential Ve;
g0� and gs� are the free electron propagators at kinetic energies
E0 and Es, respectively. Surface discontinuity is accounted
for by a complex inner potential describing electron refrac-
tion and absorption inside the solid,17 and recall that within
the PWIA the recoil momentum q� can be interpreted as the
bound electron momentum q� j.

1 Using Eq. �3�, the general
form of the �e,2e� cross section in Eq. �2� becomes

d6�

dEsdsdEede
�

kske

k0
�
jocc

�	K� e�F�k�0,k�s��q� j
�2��j,Ee+Es−E0
,

�4a�

F�k�0,k�s� = 	k�s�Wse + Vsgs�Wse + Wseg0�Vs�k�0
 = FD + FLD + FDL.

�4b�

The matrix element F can be regarded as an effective one-
electron transition operator that projects the initial valence

state �q� j
 onto the final state 	K� e�= 	k�e��1+Ge
−Ve�, that is, the

time-reversed scattering state of the emitted electron.
F�k�0 ,k�s� consists of three terms, which we have labeled L,
LD, and DL, respectively. The L term describes the electron-
electron scattering process as a single event occurring at
large momentum transfer. The LD �DL� term describes a
double collision, where the electron-electron scattering is as-
sisted by a single elastic scattering from the crystal potential
Vs, occurring after �before� the inelastic interaction Wse with
the bound electron. The three scattering sequences associated
with the three terms are schematically shown in Fig. 2. Ex-
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FIG. 1. Schematic representation of the grazing angle reflection
�e,2e� experiment. The electron gun produces the primary electron
�labeled by “0”� that impinges onto the target surface. The two
outgoing electrons �the scattered s and the emitted e� are detected
by the HDA and CMA, respectively. Their energies and momenta
are indicated by Ei and k�i �i=0,s ,e�. The arrows represent the di-
rections of the three electron beams in the hypothesis of infinitesi-
mal angular acceptance of the spectrometer; the shaded areas show
the finite angular acceptance ranges ��
�s�. The laboratory refer-
ence system is also displayed.
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FIG. 2. The three sequences describing the first order of the
�e,2e� transition operator. Sequence 1 describes the electron-
electron scattering process as a single event L at large momentum
transfer. Sequences 2 and 3 describe a double mechanism, where
the inelastic electron-electron scattering �L� is assisted by an elastic
scattering �D�. In the sequence LD �DL�, the fast electron under-
goes elastic scattering with large momentum transfer after �before�
the inelastic one with the bounded electron occurring at small mo-
mentum transfer.
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pression �4a� can be written as

d6�

dEsdsdEede
�

kske

k0
�
jocc

��K� e��
t=1

3

Ft�q� j�2

��j,Ee+Es−E0
,

�5�

where the index t=1,2 ,3 labels the three different sequences
L, LD, DL, respectively.

The computation of the �e,2e� transition amplitude that
appears in Eq. �5� is simplified when the incoherent sum of
the three scattering amplitudes can be performed. The valid-
ity of this assumption is supported by results of elastic and
inelastic I-V experiments29 performed in reflection geometry
on the HOPG surface at a few hundreds of eV incident en-
ergy, where a kinematical model with independent sequential
collisions was sufficient to account for the features observed
in the measured cross section. On the other hand, reliability
on incoherent summation can be explained considering that
the DL and the LD sequential paths end up to the same final
state for the two free electrons but, on the basis of the de-
pendence of the cross section on qz, they reconstruct two
different q values for the initial bound state. Hence, even in
the frozen-core approximation, the initial state of the two
sequences is different, and no interference between the two
amplitudes is expected. Under this assumption, the square
modulus of the scattering amplitude is simplified in

��K� e��
t=1

3

Ft�q� j�2

= �
t=1

3

�	K� e�Ft�q� j
�2. �6�

We describe a valence state in plane wave terms, whose
Bloch function is

� j,Bloch = 	r�e�q� j
 � �
g�

cq� j−g� exp�i�q� j − g�� · r�e� , �7�

where cg� j−g� is the Bloch coefficient, and its square modulus
is proportional to the density of occupied states �i of the
target. ARPES provides experimental evidence that the emit-
ted slow electron can be described as a plane wave modu-
lated by the density �unocc of unoccupied states.30,31 Hence, in
the spirit of the PWIA, we approximate the emitted electron
wave function by the form

�e = 	r�e�K� e
 � c�k�e�exp�ik�e · r�e�, �c�k�e��2 � �unocc�k�e� ,

�8�

where we have reduced the effective electron-solid potential
Ve to the Coulomb electron-ion interaction summed over all
the lattice sites. By assuming the crystal potential Vs as a
superposition of screened-Coulomb potentials of the ionic
cores,18 the �e,2e� cross section takes the form

d6�

dEsdsdEede
�

kske

k0
�
t=1

3

�t�k�0,k�s,k�e� · �unocc
t �k�e�

· ��
jocc

� j
t��j,Ee+Es−E0� . �9�

The cross section is the incoherent sum of three terms; the
two collisions �elastic and inelastic� contributing to the sec-

ond and the third term are treated in a coherent mode. Each
term of the sum appearing in Eq. �9� is factorized in two
parts: a kinematical factor �t and a structure term, similar to
the cross section valid for high-energy �e,2e� transmission
experiments.32 Nonetheless, while at high energy, the struc-
tural factor coincides with the momentum density of the ini-
tial bound state; in this case, it is modulated by the momen-
tum density �unocc

t �k�e�= �c�k�e��k�e,k�0+q� j−k�g+g��2 of the unoccupied
states with momentum k�e. This density of states is not mea-
sured by the �e,2e� experiment and should be estimated from
calculations or derived by independent measurements, such
as secondary electron emission �SEE� spectroscopy.33 Fur-
thermore, in Eq. �9� the kinematical factors �t, whose ana-
lytical expression is given in Ref. 18 �see Appendix A for full
details�, summarize all information on the one-electron inter-
actions. In the present case, to evaluate �t we have neglected
the image-charge interaction and, instead of a Jellium model,
we have used a quasi-free-electron approximation to describe
both the bound and the emitted electron. It is worth noticing
that a factorization analogous to the one of Eq. �9� is ob-
tained also for a tight binding model.34

In previous works, performed with the same kinematics as
in the present experiment,13,19,27 both quasi-free-electron ap-
proximation and independence of the three collision se-
quences were used as well. Only the DL sequence was ac-
counted for to describe the �e,2e� process, and elastic and
inelastic collisions acted as two independent events. Namely,
the elastic interaction with the solid simply resulted in vary-
ing the direction of the incident beam �reflection�.21 Intro-
ducing incoherency between the elastic and inelastic steps in
the present formulation of the �e,2e� cross section results in
changing the matrix element FDL in Eq. �4a� with the product
of the matrix elements of the two scattering events: the elas-
tic �FD� and the inelastic �FL�. The matrix element FL can be
regarded as an effective one-electron transition operator that
projects the initial valence state onto the final �distorted�
state of the emitted electron. The square modulus of FD is the
probability of the elastic reflection. Hence, the cross section
of the DL sequence reduces to the elastic scattering cross
section17 multiplied by the �e,2e� expression calculated by
Kheifets et al.,21

� d6�

dEsdsdEede
�

DL

indep

�
kske

k0
· �Sk�0�−k�0

�2 · �D�k�0�,k�0��L�k�0�,k�s� · �unocc�k�e�

· ��
jocc

� j��j,Ee+Es−E0� , �10�

where k�0� is the momentum of the fast electron between elas-
tic and inelastic scattering; the kinematical factors �D�k�0� ,k�0�
and �L�k�0� ,k�s� are the square modulus of the Fourier trans-
forms of the interaction potentials. In the case of screened-
Coulomb potential, the kinematical factors take the
�k2+�2�−2 form, where k is the module of the momentum
transferred in each scattering events and � is the inverse of
the screening length.35 The term �Sk�0�−k�0

�2 accounts for the
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periodicity breakdown of the crystal potential at the surface.
It is worth noticing that the structure term in Eq. �10� is the
same as in Eq. �9�. For the conjugated LD process, a formula
analogous to Eq. �10� holds and, as in the case of the �e,2e�
cross section derived in Eq. �9�, two different structural fac-
tors are associated with the two corresponding sequential
paths. Actually, the two sequences LD and DL are equiva-
lent, provided that the experiment is performed in a strictly
mirror geometry �i.e., 
0=
s�: Only in this specific setup
does the LD sequence reconstruct the same momentum as
the DL one. In summary, the main difference between Eqs.
�9� and �10� is the degree of accuracy used in accounting for
the interaction of the electrons with the solid, this being re-
flected in the different form of the kinematics factor calcu-
lated in the two cases.

III. EXPERIMENT

The apparatus operates at a small grazing angle, thus al-
lowing us to enhance the surface sensitivity of electrons with
intermediate kinetic energies. It is an evolution of the one
used by Rioual et al. to perform the first momentum distri-
bution measurement of a solid sample in reflection
geometry.19 Iacobucci et al.27 have already shown that the
use of angle-multichannel detection for the slow emitted
electrons improves the momentum resolution of the coinci-
dence apparatus without degrading the overall luminosity.
The Achille’s tendon of coincidence measurements is the
long acquisition time, which cannot be reduced by increasing
the flux of the primary electrons.36 In order to reduce it from
a few days to tens of hours, a value which is compatible with
the reactivity of the sample in ultrahigh-vacuum �UHV� con-
ditions, we have implemented the energy-multichannel de-
tection for the fast scattered electrons.

A schematic representation of the fully multichannel ap-
paratus is shown in Fig. 1. A detailed description can be
found elsewhere.37 Briefly, the electron gun produces a few
hundreds of eV beam, which impinged at a grazing angle on
the sample; the fast scattered and the slow emitted electrons
are detected in coincidence by two electrostatic analyzers, a
hemispherical deflection analyzer �HDA� and a cylindrical
mirror analyzer �CMA�. To achieve parallel acquisition, both
of them have been equipped with two-dimensional position
sensitive detectors �PSDs�. The full description of the coin-
cidence electronics for experiment control and acquisition is
described in Ref. 37. Typical energy and the momentum res-
olution achieved are 1.3 eV and 0.15 Å−1, respectively.
These quantities are mean values; more details are given in
the following paragraph.

As a target, we have used the �0001� surface of a com-
mercial HOPG sample of ZYA quality �Surface Preparation
Laboratory, Zaandam, The Netherlands�, whose alignment
along the ĉ axis was better then 0.2°, prepared in UHV ac-
cording to the method described in Ref. 38. We have checked
its surface cleanliness and order by measuring the angle dis-
tribution of elastically scattered electrons, as well as by mea-
suring reflection electron energy loss spectroscopy and SEE
distributions. These measurements have given evidence for
surface stability �clearness and wrinkleless� over a 1 week

period, which is larger than the one needed for �e,2e� experi-
ments.

A. Phases space sampled by the spectrometer

The PSD’s outputs have been binned into sets of channels
whose dimensions are determined by the energy resolution
�E and by the momentum resolution �q that one wants to
achieve. The main contribution to �E comes from the energy
resolution of the HDA, i.e., 0.9 eV, as measured in noncoin-
cident multichannel mode, which results to 1.3 eV in coinci-
dence experiments by regrouping the energy channels into
ten independent bins. The main contribution to �q corre-
sponds to the CMA angle resolution �, which is obtained
by dividing its azimuth acceptance into 12 slices of 30°
each.37 These values are a compromise between the resolu-
tions that one wants to achieve and the reasonable values of
the coincident count rate. The bins, time correlated into
couples, generate 120 coincidence channels. Each channel
given by the binning procedure corresponds to a constant
volume ����. However, the transformation of the angle-
energy space into the momentum–binding energy phase
space does not conserve the volume. Each bin couple
samples a different volume �q��� of the phase space with
associated centroid values 	q
 and 	�
.

A procedure has been developed to calculate the values of
volumes and centroids. We have simulated our experiment,
having finite angle-energy resolutions, as a collection of ex-
periments with infinitesimal resolutions. In our experimental
conditions, the energy resolution effect is six times smaller
than the angular acceptance effect; hence, we have taken into
account only the angular effects and simulated the accep-
tance effects over the momentum space. To this end, we
have described each electron channel �i.e., primary �0�,
scattered �s�, and ejected �e�� as a wave-vector array
k�� l= �k�l,1 ,k�l,2 , . . . ,k�l,Nt

� �l=0,s ,e�, where Nt is the number of
the array components, and each component represents the
electron wave vector in the case of infinitesimal angular ac-
ceptance. The array shapes of both the primary and the scat-
tered electrons are spherical sectors, and the array shape of
the ejected electron �over all the azimuthal directions� is a
conical crown, as shown in Fig. 1. Each HDA bin has been
simulated by using the wave-vector array shape of the scat-
tered electrons having the corresponding bin energy. Let us
consider the plane perpendicular to the symmetry axis of the
l array. We have divided this plane by a constant step grid,
where the nodes identify the projection of the k�� l wave-vector
vertexes. In this way, the discrete angle distribution of the
three electron channels have been calculated for each of the
respective N0, Ns, and Ne elements according to momentum
and energy conservation. We have extracted the measured
recoil momentum 	q�
 by averaging over the recoil momenta
q�h, each q�h being given by the momentum conservation law
of individual �e,2e� kinematics �momenta tern� obtained by
combining the wave vectors of the three arrays �0, s ,e�,
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	q�
 =

�
i=1

N0

�
m=1

Ns

�
n=1

Ne

�k�s,m + k�e,n − k�0,i�

N0 � Ns � Ne
=

�
h=1

Ntot

q�h

Ntot
= �

h=1

Nne

f�,h · q�h,

�11a�

where

�
h=1

Nne

f�,h = 1��q�x,y,z = �� 1

Ntot
�
h=1

Ntot

�	q
 − qh�2�
x,y,z

,

�11b�

where i, m, and n index the elements of each array.
Ntot=N0�Ns�Ne is the total number of the terns given by
all the combinations of the components of the three wave-
vector arrays; namely, it is the total number of individual
kinematics corresponding to experiments with infinitesimal
acceptance. As different momenta terms may give rise to the
same q� , in Eqs. �11a� and �11b� we have introduced the “dis-
crete probability density” f�,h. It represents the relative
weight of the momentum q�h sampled by each nonequivalent
tern �the total number of these terns being Nne�, and it is
determined by the experimental acceptance. The variance of
the f�,h distribution, given by ��q�x,y,z, varies less than 10%
for a step of the wave-vector array of 0.05 Å–1.

By averaging over the Ntot differential �e,2e� cross sec-
tions Yh with infinitesimal angular acceptance, we extract the

measured cross section Ỹ�e,2e�,

Ỹ�e,2e� �
1

Ntot
�
h=1

Nh � d6�

dEsdsdEede
�

h
=

1

Nne�
h

f�,hYh,

�12�

which is obtained by using the weight function f�,h.
The quantitative relevance of these considerations is

found in the analysis of valence-band mapping measure-
ments �see next section�. We have performed a series of
�e,2e� experiments, which sample binding energies and
parallel and perpendicular momenta in the ranges
0���15.4 eV, 0.3�q� �2 Å−1 and 2.2�qz�2.8 Å−1, re-
spectively �as usually defined in surface studies, q� is decou-
pled in perpendicular and parallel components with respect
to the surface plane�. While the experiment measures mo-
menta outside the solid, to evaluate the �e,2e� cross section
we have described the electron scattering events inside the
solid; hence, to calculate the perpendicular momentum, we
have accounted for the surface discontinuity by using a com-
plex inner potential U0= �15.6+7i� eV, describing electron
refraction and absorption.29 We have used specular reflection
geometry �
0=
s=6.0�0.5° �, primary electrons with ki-
netic energies 318�E0�334 eV, and ejected electrons with
energy 6�Ee�22 eV. During each �e,2e� measurement, the
kinetic energies of both the primary and the ejected electron
were fixed, while scattered electrons of 300�5 eV were si-
multaneously measured within the accepted range of the
multichannel detector.37

As an example, Fig. 3 plots the projection onto the �q� ,��
plane of the phase space sampled in a measurement taken for

E0=318 eV and Ee=6 eV. Each data point is given by the
centroid of energy 	�
 and momentum 	q�
, reconstructed
according to Eqs. �11a� and �11b�, within each individual bin.
In Fig. 3, the squares of unbiased estimate variance for the
reconstructed parallel momentum �q� are reported as error
bars; we notice that the variance depends on both energy and
momentum, and it varies in the range 0.05��q� �0.10 Å−1.

An example of the f�,h distribution is given in Fig. 4.
The primary electron impinged onto the sample surface with
kinetic energy E0= �321.05�0.05� eV and grazing angle

0=7.5°. The ejected electron, with kinetic energy
Ee= �10.0�0.2� eV, was collected at a fixed polar angle

e=42.3° and over the entire azimuth angle. The scattered
electron, with kinetic energy Es= �300.5�0.5� eV, was col-
lected by scanning 
s over the angular range 1° �
s�12°.
The histograms reported under the bottom axis correspond to
the measured f�,h distribution. It is worth noticing that this
function is neither uniform nor symmetric, but it has two
distinct structures at the edge, and then the corresponding
measured momenta may not coincide with the distribution
mean values. This fact underlines the importance to simulate
the effects of the spectrometer angular acceptance.

To summarize, the performances of the experimental ap-
paratus are enhanced in the parallel multichannel-acquisition
mode: Calculated according to Eqs. �11a� and �11b�, an av-
erage parallel momentum resolution of 0.07 Å−1 has been
achieved. The multichannel acquisition of scattered electrons
has allowed us to increase the detected energy range by a
factor of 10 without degrading the energy resolution
�1.3 eV�, hence to reduce the acquisition time by an order of

0.4 0.6 0.8 1.0
-10
-8
-6
-4
-2
0

(e
V
)

ε

q// (Å
-1)

FIG. 3. Phase-space �q� ,�� sampled by a multichannel
�e,2e� experiment performed in specular reflection geometry
�
0=
s=6.0° � for fixed kinetic energies of the primary electron
�E0=318 eV� and of the ejected electron �Ee=6 eV�. During the
measurement, the scattered electrons of 300�5 eV were simulta-
neously measured within the accepted range of the multichannel
detector. The positions of the experimental data are given by the
centroids of energy 	�
 and parallel momentum 	q�
 of each bin
calculated according to Eqs. �11a� and �11b�. The bars represent the
estimate variances of the discrete probability densities �f�,h�.
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magnitude with respect to the single-channel-acquisition
mode.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In the following paragraphs, we present and discuss two
sets of reflection �e,2e� experiments. The first set of angle-
integrated measurements are relevant in determining the re-
liability of the theoretical model discussed in Sec. II. In the
second set of angle-resolved �e,2e� measurements, we exploit
the model to interpret the results of valence-band mapping
experiments.

A. Dependence of the differential cross section on momentum
transfer

We have studied the dependence of the differential cross
section �DCSS� on momentum transfer by measuring the co-
incidence angular distribution of electron pairs as a function
of the scattering angle 
s �see the geometrical setup in Fig.
1�.

In Fig. 4, the measured DCSS �squares� is reported as a
function of the variation of the scattering angle �
 with re-
spect to the specular reflection angle 
0 �i.e., �
=
s−
0�.
From the energy conservation law �Eq. �1�� in which
WF=4.5 eV is assumed, the selected binding energy is

�= �6.0�0.5� eV. The angular distribution shows a weak
asymmetry with respect to a maximum, which corresponds
to the specular reflection ��
�0° �.

Using Eqs. �11a� and �11b�, we have calculated the paral-
lel momentum 	q� �
 and the accepted momentum range �q� of
about 0.3 Å−1 for each experimental point. The measured
cross section �Eq. �12� in Sec. III� is weighted over �q� by
the “discrete probability densities” f�,h that are reported for
each parallel momenta under the bottom axis. In the mea-
surements of Fig. 4, the variation of the centroid of the par-
allel momentum is negligible: 	q���
�
�	q�
=1.0 Å−1 irre-
spective of the sequence adopted to model the interaction
�single sequence event or double sequence event�. On the
contrary, the reconstructed perpendicular momentum de-
pends on the sequence type.

With reference to Eqs. �8� and �9�, upon the used kine-
matics, the normalization factor �kske /k0� and the density of
the unbound states ��k�e� are constant for the measured
DCSS, so the experimental angular distribution depends only
on the kinematical factors and on the electron momentum
density of the bound states �; according to Eqs. �9� and Eq.
�12�, it takes the form

Ỹ�e,2e���
� � �̃L�̃L + �̃DL�̃DL + �̃LD�̃LD, �13�

where �̃ , �̃ , =Ntot
−1��h�t,h�t,h, and t labels the three se-

quences L, DL, and LD. In the following paragraphs, we
compare the experimental data with model calculations that
include contributions from the single sequence event �L� or
the double sequence event �DL and LD�.

Single step �L� event. The �e,2e� mechanism is described
by a single inelastic scattering event with a large momentum
transfer. According to momentum and energy conservations,
the experiment samples � valence-band states, with a minor
contribution from �3 states, at fixed q� and with perpendicu-
lar momentum ranging from 6.8 to 7.4 Å−1. Momentum den-
sity calculations along qz are available in literature only for
the � and the �1 bands, and they are limited to the depen-
dence along the �A direction39,40: Both distributions become
nearly constant for momentum values qz�3 Å−1. On this
basis, we may expect that the � and the �3 states contribute
with constant electron momentum densities to the measured
cross section, which becomes proportional only to the kine-

matical factor �̃L �see Eq. �13��. According to the approxi-
mations used in Sec. II, this factor is the Fourier transform of

the electron-electron potential W�se, which varies as the in-
verse fourth power of the momentum transfer. Hence, the
DCSS varies monotonically with �
 in the measured angular
range. The calculated distribution is reported in Fig. 4 �dot-
dashed line�; it decreases monotonically as �
 increases and
it is in evident disagreement with the measured profile.

Double-step �LD, DL� event. In this case, the inelastic
scattering in each sequence is characterized by small mo-
mentum transfer, and we will also distinguish cases in which
L and D act as coherent or incoherent processes. The present
measurements do not allow a discrimination of the contribu-
tion of the two sequences; hence, the experimental data are
compared with the sum �average� of the contributions of both

0

20

40

60

80

100

120

-6 -4 -2 0 2 4
∆θ = θ s - θ0 (deg)

In
te
ns
iti
es
(a
rb
.u
ni
ts
)

FIG. 4. Main figure: angle distribution of the scattered electrons
�squares� measured with kinetic energy of 301 eV, fixed polar angle
�
e=48�3° �, and integrated over the azimuthal angle. The primary
electron energy is 321 eV. The distribution is a function of the
angular variation with respect to the specular angle ��
=
s−
0�
and is compared to the theoretical cross section �line� accounting of
the experimental acceptances. Each theoretical distribution is calcu-
lated for three different descriptions of the �e,2e� scattering event: L
sequence, single inelastic scattering �dot-dashed line�; LD and DL
sequences, elastic scattering assisted by an inelastic one described
as two coherent events �solid line� and incoherent events �dashed
line�. Each theoretical distribution is fitted to the experimental data
using a scale factor as the only free parameter. Bottom figure: dis-
crete probability densities �f�,h� given by the experimental accep-
tances. They represent the relative weight of the momenta sampled
by each experimental data �see text for details�.
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sequences. On the basis of Ref. 29, the two contributions
have the same weight. The variation of qz �from
2.1 to 2.7 Å−1� selected by the two sequences is such that the
associated momentum distribution variations almost com-
pensate each other. The measured momentum density ex-
trapolated from calculations along the �A direction39,40 re-
sults in variation less than 20% over the angle scan.

In the case of events acting coherently in each sequence,
according to Eqs. �9� and �13�, the measured �e,2e� cross
section reduces to

ỸDL�LD��
� = ỸDL��
� + ỸLD��
� � �̃DL�DL�qz�

+ �̃LD�LD�qz� . �14�

To perform the calculation of the kinematical factors, we
have used the same electron-electron potential Wse as in the
case of the single step �L event� and assumed the crystal
potential Vs as a superposition of effective core potentials of
the ions Vion�r�� with a functional form corresponding to a
Coulomb potential �neglecting the screening length:
�ef f =0 Å�.18 To fit the experimental data, we have used only
a scale factor as a free parameter. The calculated distribution
�solid line in Fig. 4� is in fair agreement with the measured
distribution.

In the case of “incoherent” processes �Eq. �10��, the coin-
cidence cross section corresponding to each sequence is the
product of two independent scatterings, and according to Eq.
�13� it reduces to the form

ỸDL�LD��
� � �̃D�̃L�DL�qz� + �̃D�̃L�LD�qz� , �15�

where �̃D and �̃L are the kinematical factors of the electron-
electron elastic and inelastic scattering, respectively. The cal-
culated distribution �dashed line in Fig. 4� reproduces only
the gross features of the measured one: It shows a maximum
in the vicinity of the specular direction; however, it is much
broader and asymmetric with respect to the experimental dis-
tribution, and the peak position is shifted by �−1°.

To summarize, these findings clearly suggest that in de-
scribing electron scattering in reflection geometry at interme-
diate energies, it is crucial to adopt not too simple a picture
of the electron interaction with the solid. A single-event
mechanism as sole does not explain the experimental curve,
but it may make a very small contribution. Double-event
models in general give a good description of the experiment.
When the elastic and inelastic events are considered as inco-
herent, as already done in Ref. 21 only a qualitative agree-
ment with the angle dependence of the measured DCSS is
obtained. A much better agreement is obtained when, within
a given sequence, the elastic and inelastic events are treated
coherently.

B. Band mapping measurements

According to the coherent model described by Eq. �9�, the
measured �e,2e� cross section reduces to the form

Ỹ�e,2e��EB,q�� � A · ��̃DL + �̃LD��̃��,q�,qz� , �16�

which explicitly highlights the dependence of the electron
momentum density on both binding energy and recoil mo-

mentum. To bring the measured cross section onto the same
relative scale, we have divided each of them for the factor A,
which depends on the experimental conditions and on the
momentum density of the ejected electron. Namely,

A =
kske

k0
· �̃�k�e� · fCMA�Ee�fHDA�E0,Es� , �17�

where fCMA and fHDA are the efficiency functions of the two-
electron analyzers, which have been derived by an indepen-
dent set of calibration measurements and whose details can
be found in Ref. 37; the modulation due to the unoccupied
density of states has been estimated by SEE measurements.34

Once A is determined, we are left with quantities that depend
only on sample properties that can be compared directly with
calculated band structures. This is done in Fig. 5, where the

intensity of the �̃�e,2e� /A ratio is reported as a gray-scale map
after multiple loss deconvolution.19 The binding energy is
relative to the Fermi level �F. Darker regions represent
higher intensities, while the blank regions are the unmea-
sured part of the �q� ,�� space. For a homogeneous visualiza-
tion, the plotted intensities are obtained by interpolating the
data at a constant step of 0.05 Å−1, weighting each experi-
mental point by the function f�,h, three points averaging.

In Fig. 5, we have displayed the valence-band structure of
HOPG calculated in the ALH plane, obtained by averaging
over all the azimuth orientations of graphite high symmetry
directions. Starting from the band calculations of Ref. 40
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FIG. 5. Experimental �e,2e� cross section plotted in the binding
energy–parallel momentum phase-space after energy-loss deconvo-
lution. The intensities are given by a linear gray scale �darker re-
gions correspond to higher intensities�. The binding energy is rela-
tive to the Fermi level �F. The HOPG valence-band structure is also
shown �see text for explanation�. In the inset, the dispersion of the
centroid values �squares� obtained by the fitting procedure is com-
pared with the dispersion ribbons f�q� ,�� of the HOPG � states.
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performed in the �KM plane and along the �A direction of
single-crystal graphite �0001�, we have projected the bands
over the ALH plane. Because of the in-plane average of the
crystallites, in HOPG the in-plane Brillouin zone boundaries
are not univocally determined, and for the same reason fami-
lies, rather than individual dispersion curves, will correspond
to each q�. The interval of binding energies upon which these
families are distributed is represented by “ribbons” in Fig. 5.

From the contour lines of Fig. 5, we note that the energy
dispersion of the � states is well reproduced by the measured
cross section, with a region of maximum intensity between
0.6 and 0.9 Å−1. In particular, it is evidently a maximum
close to the boundary point H, whose position �qF

exp

=1.7�0.1 Å−1� agrees with the Fermi momentum of
graphite.41 This momentum distribution is relative to states
located near the Fermi level ��=−0.2 eV�, for which the dis-
tortion effects due to multiple scattering are minimal; this
result can be considered a further experimental check to cor-
roborate the validity of our kinematical reconstruction. To
make the comparison with theory more quantitative, we have
fitted each experimental energy distribution for each parallel
momentum by a free Gaussian function. In the inset of Fig.
5, the dispersion of the centroid values �squares� obtained by
the fitting procedure is reported and compared with the “dis-
persion ribbons” of the � states. The agreement between
theory and experiment is satisfactory and confirms the appro-
priateness of the q�-reconstruction procedure adopted.

As along the z direction the valence states have an atomi-
clike behavior, in Fig. 5 we have plotted the measured cross
section as a function of the parallel momentum regardless of
the qz component. According to the two-dimensional struc-
ture of HOPG, we propose to decouple the parallel and the
perpendicular components of the spectral momentum density
for each selected orbital. Hence, momentum density takes
the form of the product of the two spectral components: �
=�� ��z. By using Eq. �16�, we obtain the spectral parallel
momentum density,

��̃���,q���qz
� �̃z

−1
Ỹ�e,2e�� ��,q��

��̃DL + �̃LD�
, �18�

where �̃z does not depend on the binding energy and where

��̃�����q�,qz
is the separation energy spectrum at fixed mo-

mentum value. In Fig. 6, the densities of states ��̃����q�,qz
are

reported �squares�. They correspond to different momentum
values in the range �0.55�q� �1.75� Å−1 and are derived
from Eq. �18� upon operating an energy binning �Ebin
=1.3 eV on each measurement. Fifteen distributions are
shown in the figure; they are arranged in three columns, each
one corresponding to the perpendicular momentum selected
in the measurement. The kinematical factor of each measure-
ment depends weakly on the momentum �about 10%�, while
it varies by about a factor of 10 over the energy range, this
large variation enhancing the uncertainty on the determina-
tion of deeper-lying states.

To extract the momentum density for each individual va-
lence state, we have fitted the measured intensity with a
function given by the sum �thick line� of Gaussian curves

�thin lines for each individual electron state: dotted lines for
� states and continuous ones for �2 and �3�. The only free
parameter is the amplitude; the energy positions of the Gaus-
sians are taken from calculations of Ref. 40 and the full
widths at half maxima obey the following expression:
���Ebin�2+ ��Edisp�2+ ��E��2, in which �Edisp is the energy
state dispersion corresponding to the projection of the mo-
mentum acceptance onto the energy axis and �E� is the in-
trinsic lifetime of the bound state that we have considered
proportional to the square root of the binding energy. The
distribution intensities decrease for increasing parallel mo-
mentum. For each fixed momentum value, the main feature
corresponds to � states, while less intense structures are as-
sociated with �2 and �3 states. For small parallel momentum
values, the three states are not well resolved. For increasing
momentum, the energy separation increases, and in the dis-
tributions at q� =1.00 Å−1 we can clearly distinguish � and
�2 states. For q� �1.00 Å−1, the sampled energy range allows
us to measure only � states. The fit functions reproduce the
gross features of the experimental distributions, except for
deep binding energies; this finding is quite evident in the
distributions for q� �0.7 Å−1. The difference between the
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FIG. 6. Densities of states corresponding to different values of
the recoil parallel momenta �0.55�q� �1.75� Å–1, displayed at a
momentum step of 0.15 Å−1 and for three different qz values. The
experimental distributions �dots� are fitted by three Gaussian curves
�thin lines� for each individual electron state �dotted lines for �
states; continuous ones for �2 and �3� with centroids and widths
given by theory �Ref. 40�.
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measured and the fitted intensities could be ascribed both to
intrinsic loss contributions,42 which are not accounted by the
deconvolution procedure, and to g�-assisted events, which
bring intensities associated with �2 and �3 bands into the
first Brillouin zone. For such events, the measured momen-
tum is a “crystal momentum:” q��=q� +ng� , where n is an in-
teger number. These are anyway minority events �we notice
the multiplicative factors used for the spectra at large q val-
ues to bring the corresponding densities of states to the same
relative scale� with respect to the dominant signal given by
�-band states in the first Brillouin zone.

Statistical uncertainty limits to the � band a reliable
analysis of the momentum dependence. The distributions
corresponding to the three selected qz values are reported in
Fig. 7 �squares, circles, and triangles, respectively�. We can
notice that in the q�-overlap regions the distributions show
similar intensities in spite of corrections for the different ki-
nematical factors �Fig. 7�a��. According to Eq. �18�, the spec-
tral parallel momentum density of the � states is obtained by
dividing each measured distribution by the momentum den-
sity along the �A direction: �̃��q��= �̃�q� / �̃�A�qz�. The result
is reported in Fig. 7�b�, where we have used for �̃�A�qz� the
distribution calculated in ref. 40

Experimental results shown in Fig. 7�a� suggest a clear
dependence of the measured momentum distributions upon
the perpendicular component qz, and matching between the
three distributions is achieved by taking into account the
dependence on qz �Fig. 7�b��; hence, we argue that the reflec-
tion �e,2e� cross section depends on the full real momentum

rather than only on the parallel component q� of crystal mo-
mentum. The improved match obtained in the overlap re-
gions corroborates the validity of our approximation decou-
pling the perpendicular and the parallel momentum densities
in HOPG; in fact, the momentum distributions link up well,
though different kinematics conditions characterize them.
The experimental profile is a measurement of the parallel
momentum density, obtained in spite of the presence of a
non-negligible perpendicular component. Namely, the com-
prehension of the reflection �e,2e� mechanism has allowed us
to measure ���� as a function of q� � in the first Brillouin zone
and of qz determined by the momentum transferred in the
inelastic collision rather than by reciprocal lattice vectors g� .
To make the reflection �e,2e� technique a reliable method, a
comparison with specific calculations is needed. An im-
proved statistics for measurements at deeper binding ener-
gies is also required in order to evaluate the relevance of
multiple scattering and of g�-assisted events.

V. CONCLUSIONS

This paper answers the question of which model is appro-
priate to describe grazing incidence �e,2e� events from sur-
faces at moderate energies and in asymmetric kinematics. To
this end, the differential cross section for reflection �e,2e�
processes has been derived within two different frameworks
based on the theoretical models developed in Refs. 21 and
24. Both cross sections rely on a two-step mechanism that
couples, either coherently or incoherently, the elastic colli-
sion with the crystal lattice to the ionizing inelastic one. To
highlight which of the two models reproduces better the
mechanism of the electron pair ejection, the cross section
dependence on momentum transfer at grazing incidence
angle has been experimentally investigated. Experimental re-
sults rule out the possibility of describing these events as a
single inelastic collision with large momentum transfer.
Double-step models, in which the inelastic scattering occurs
at small momentum transfer, give in general a correct de-
scription of the experiment; in particular, the fair agreement
obtained between measurements and theory in the “coherent”
case gives evidence that such description is preferable over
the incoherent one.

In reflection geometry, it has been possible to perform
valence-band mapping and to extract electron momentum
density with energy and momentum resolutions �1.3 eV,
0.15 Å−1� that are comparable with those obtained in trans-
mission geometry �e,2e� spectroscopy. In the case of HOPG,
the aforementioned coherent two-step model has allowed us
to measure the momentum distribution of �-electron states in
the first Brillouin zone. The agreement between theory and
experiment is satisfactory, but the presence of g�-assisted
events cannot be excluded.

It is worth noticing that we have applied reflection �e,2e�
spectroscopy in low-energy conditions, but it could as well
be applied at much higher incident energies. Hence, in prin-
ciple, by tuning the energy one can achieve either bulk or
surface sensitivity. The results of the present work, obtained
by an implemented apparatus that has allowed performing
the experiments with significant reduction of the acquisition
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FIG. 7. �a� Electron momentum distributions of the HOPG �
states measured for three qz values of 2.25 Å−1 �squares�, 2.55 Å−1

�circles�, and 2.8 Å−1 �triangles�. �b� Parallel momentum density of
the � states obtained by dividing each measured distribution by the
momentum density along the �A direction calculated in Ref. 35.
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times, show that the determined model for reflection �e,2e�
can be used to measure momentum densities, thus opening
up the possibility to build a momentum spectroscopy with
high surface sensitivity that makes this technique an appeal-
ing method for studying surfaces and overlayer systems.
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